Methodology for Formulating LUP Advice in the Vicinity of Natural Gas Pipelines

Ian Hirst, Stuart Pointer
Methodology and Standards Development Unit
Hazardous Installations Directorate
Health and Safety Executive

ACDS MHSC Working Group on Pipelines, 25 June 2002

For what pipelines is LUP advice given?

- Natural Gas above 8 bar a 20,000 km
- Ethylene 1,200 km
- Spiked Crude 200 km
- Ethane, Propylene, LPG etc 100 km
- Other flammables and toxics 400 km

How does it work?

• For each pipeline notified to HSE under the relevant Regulations, HSE defines a Consultation Distance to the Local Planning Authorities

How does it work?

• who are required to consult HSE before granting planning permissions within the Consultation Zone.

How does it work?

• The sizes of the Consultation Zone and of subdivisions within it are based, at least in part, on a pipeline risk assessment.

Current basis of pipeline LUP zones

	Inner Zone	Middle Zone	Consultation Zone
Natural gas	Multiple of BPD	Multiple of BPD	Multiple of BPD
Other flammables	Risk of 10 cpm or FBR	Risk of 1 cpm	Risk of 0.3 cpm or 4/3 times MZ
Toxic	Risk of 10 cpm	Risk of 1 cpm	Risk of 0.3 cpm

Risk of what, to whom, from what?

• The risk that a <u>Typical Householder</u> will receive a <u>Dangerous Dose</u>, or worse, of thermal radiation from a pipeline accident

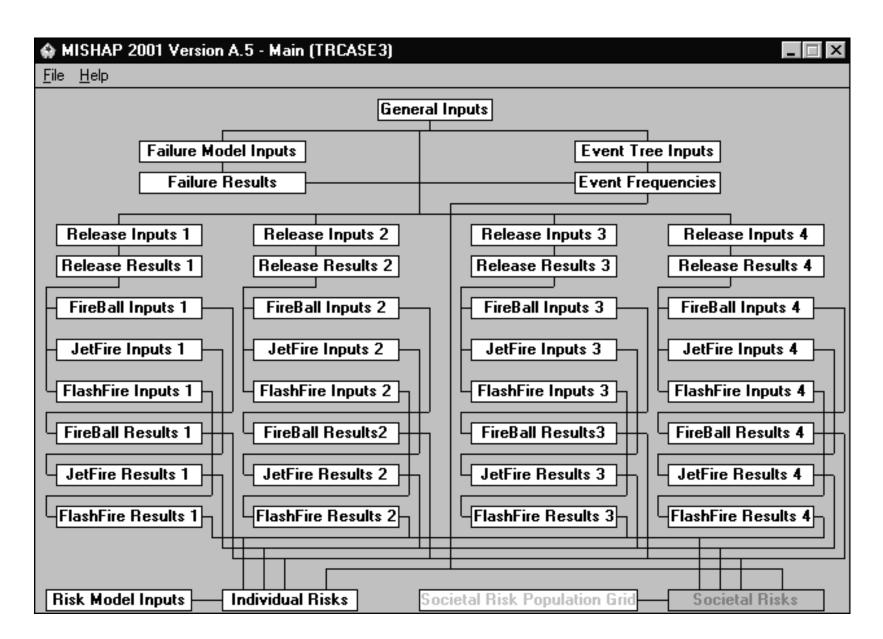
Typical Householder?

- Is present all of the time
- Is indoors most of the time
- If outdoors will run towards shelter at a typical speed
- Has typical sensitivity to thermal radiation

Dangerous Dose?

• For thermal radiation HSE's "dangerous dose" is 1,000 $(kw/m^2)^{4/3}$ *s

Dangerous Dose?


- ... which is deemed sufficient to give:-
 - severe distress to almost everyone;
 - a substantial fraction requiring medical attention;
 - some people seriously injured,
 requiring prolonged treatment; and
 - any highly susceptible people might be killed.

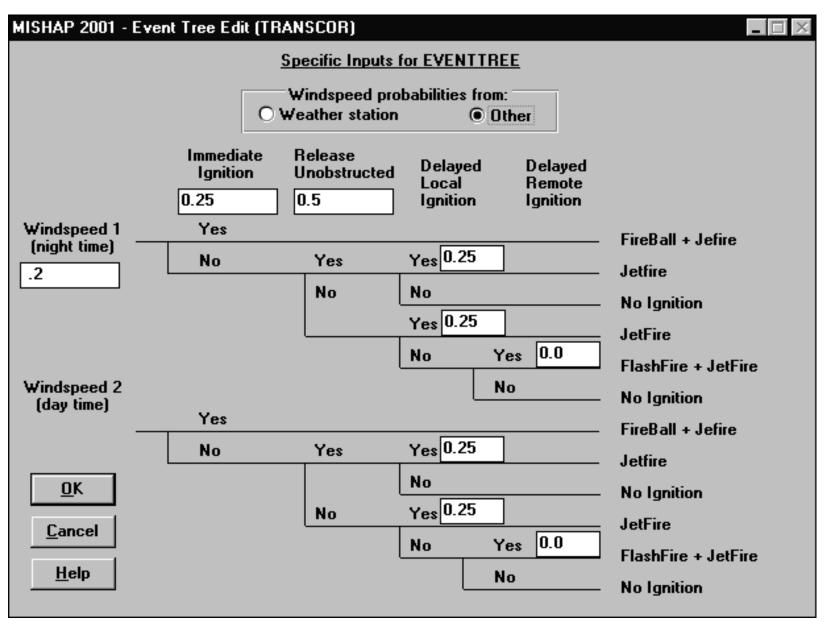
What levels of this risk give us concern?

Precisely these:-

	Inner Zone	Middle Zone	Consultation Zone
Natural gas	Multiple of BPD	Multiple of BPD	Multiple of BPD
Other flammables	Risk of 10 cpm or FBR	Risk of 1 cpm	Risk of 0.3 cpm or 4/3 times MZ
Toxic	Risk of 10 cpm	Risk of 1 cpm	Risk of 0.3 cpm

- HSE's computer programme for pipeline risk assessment is MISHAP
- An early version of MISHAP was described in "Pipes & Pipelines International" during 1997
- It hasn't changed a great deal since then

MISHAP calculates
four <u>failure modes</u>:Rupture
Large Hole
Small Hole
Pin Hole


... release rates;

.... and three <u>fire types</u>:fire-ball
jet-fire
flash-fire

.... which are combined into <u>scenarios</u>,

defined by an <u>event tree</u>

with <u>branch probabilities</u>

Frequencies of failure modes

- Objectives
 - Make Operational Use of Third Party
 Predictive Model
 - Required validation and verification
 - Review Operational Experience data for other causes of failure
 - Make use of UKOPA data?
 - Batch running
 - Practical requirement

- Predictive Model
 - Structural Reliability techniques
 - Similar to the Advantica model as used by UKOPA
 - Uses BG input damage data
 - Numerical solution vs. direct integration
 - Validation & Verification
 - Model developers unwilling to underwrite its use operationally
 - Intended for comparative checks only

- Predictive Model Validation and Verification
 - General Trends
 - Change in failure frequency with DF at various diameter/wall thickness combinations
 - Covered whole range of the BG network
 - Trends logical
 - » Example Graphs

- Predictive Model Validation and Verification
 - Comparison with Operational Experience
 - Statistical Analysis
 - Definition of 6 'typical' pipelines based on population of the BG network
 - Good correlation between Predictive Model and Operational Experience Data

Pipeline Diameter	Failure Frequencies (10 ⁻⁹ /m.yr)					
(mm)	Total			Rupture		
	Op. Exp	Predictive	Factor	Ор.Ехр	Predictive	Factor
1067	3.16	2.78	0.88	1.26	1.27	1.01
914	4.42	5.31	1.20	1.26	2.4	1.9
614	3.16	4.34	1.37	1.01	1.97	1.95
457	5.81	4.41	0.76	1.9	1.25	0.66
324	21.7	26	1.2	7.33	8.46	1.15
219	106	36.9	0.35	35.4	12.7	0.36

Comparison of Predictive Model with Operational Experience

- Predictive Model Conclusions
 - Model is robust within the pipeline parameters of the BG network
 - Appears more conservative than Transco under some conditions
 - Good correlation with operational experience data
 - Model does not converge for some low Design
 Factor and small diameter pipelines
 - Estimation of Third Party Frequency necessary

- Operational Experience Data
 - HSE has, until now, used EGIG data
 - Initial risk results prompted a review
 - Indications that the use of UK specific data could be beneficial
 - UKOPA data adopted for key causes

- UKOPA Data
 - Four 'causes of failure'
 - Mechanical fatigue failure
 - Natural landslip
 - Corrosion
 - Other a group of miscellaneous causes
 - Key differences with EGIG are in Mechanical and Natural causes

- Mechanical
 - Overall failure frequency very similar between EGIG & UKOPA
 - UKOPA biased much more to smaller holes than rupture
 Table
 - Significant for Risk Assessment as Rupture and Large Hole frequencies dominate
 - Net result is that failure frequencies for mechanical cause are low, a small proportion

UKOPA/Opfothe total

Zero Failures

- Natural Failures
 - A clear difference between UK and Europe generally <u>Table</u>
 - Failure frequency much lower for UK
 - Very few failures
 - Resulting frequency low but still significant

Further slides on Natural Failures

- Corrosion Failures
 - Currently remain based on EGIG data
 - Initial review did not indicate significant differences
 - Generally a very low proportion of the total failure frequency
 - Time constraints
 - Move to UKOPA data in due course

- 'Other' Causes
 - A significant proportion of the total number of recorded failures
 - Various causes
 - Lightning strike,
 - Cracking due to wet town gas
 - Threaded joints
 - etc

- 'Other' Causes
 - Engineering judgement applied to each cause
 - Credibility of failure in each hole size
 - E.g. Wet town gas failures eliminated, threaded joints= pin hole only
 - Net result has no impact on rupture frequency but significant impact on Large Hole frequency.

	Rupture	Large Hole	Small Hole	Pin Hole
Third Party	PIPIN Predictive Model	PIPIN Predictive Model	PIPIN Predictive Model	PIPIN Predictive Model
Mechanical	8.10 ⁻¹²	8.10 ⁻¹²	2.10 ⁻¹¹	9.10 ⁻⁸
Natural	2.10 ⁻⁹	2.10 ⁻¹⁰	2.10 ⁻⁹	6.10 ⁻⁹
Corrosion	EGIG Data via PIPIN	EGIG Data via PIPIN	EGIG Data via PIPIN	EGIG Data via PIPIN
Other	0	7.10 ⁻¹⁰	7.10 ⁻⁹	3.10 ⁻⁸

Overall Failure Frequencies (/m.year)

Frequencies of Scenarios

Frequencies of scenarios

• Combining the <u>frequencies of the failure</u> modes with the <u>branch probabilities</u> gives the frequencies of the scenarios

We're half-way there!

Consequences of scenarios

- MISHAP was first frozen in 1998
- MISHAP98 included these modules:-

Release rate: LOSSP

Fire-ball: FLAMCALC

Jet-fire: JIF/MAJ3D

Flash-fire: CRUNCH

Validation of MISHAP98

 The damage predictions of MISHAP98 were compared with the damage that occurred in real pipeline accidents

We concluded that one of the modules
 Jet-fire: JIF/MAJ3D
 was not performing well and should be replaced

Consequences of Scenarios

• So in 2001 we created a new version, MISHAP01, with

Jet-fire: PIPEFIRE

• Its use is limited to natural gas

Validation of MISHAP01

• As before, the damage predictions of MISHAP01 were compared with the damage that occurred in real pipeline accidents

SUBSET			
	Observed Burn Area (sq.metres)		
Immediate Ignition			
Bealeton	20800		
Beaumont	29700		
Cartwright	46000		
Lancaster	60000		
Delayed Ignition			
Edison	104000		
Latchford	47000		
Natchitoches	56000		

SUBSET			
	Observed Burn Area (sq.metres)	Calc/Obs Fire-ball	
Immediate Ignition			
Bealeton	20800	7.0	
Beaumont	29700	5.6	
Cartwright	46000	1.3	
Lancaster	60000	2.6	
Delayed Ignition			
Edison	104000	-	
Latchford	47000	-	
Natchitoches	56000	-	

SUBSET				
	Observed Burn Area (sq.metres)	Calc/Obs Fire-ball	Calc/Obs Jet-fire OLD	
Immediate Ignition				
Bealeton	20800	7.0	-	
Beaumont	29700	5.6	•	
Cartwright	46000	1.3	-	
Lancaster	60000	2.6	-	
Delayed Ignition				
Edison	104000	-	0.0	
Latchford	47000	-	0.0	
Natchitoches	56000	-	0.6	

SUBSET				
	Observed Burn Area (sq.metres)	Calc/Obs Fire-ball	Calc/Obs Jet-fire OLD	Calc/Obs Jet-fire NEW
Immediate Ignition				
Bealeton	20800	7.0	-	-
Beaumont	29700	5.6	-	-
Cartwright	46000	1.3	-	-
Lancaster	60000	2.6	-	-
Delayed Ignition				
Edison	104000	-	0.0	0.9
Latchford	47000	-	0.0	2.0
Natchitoches	56000	-	0.6	1.0

Validation of MISHAP01

- We have also made comparisons with data from rupture tests, provided to us by Transco
 - Release rate versus time (Canada)
 - Heat fluxes vs distance (Canada & Spadeadam)

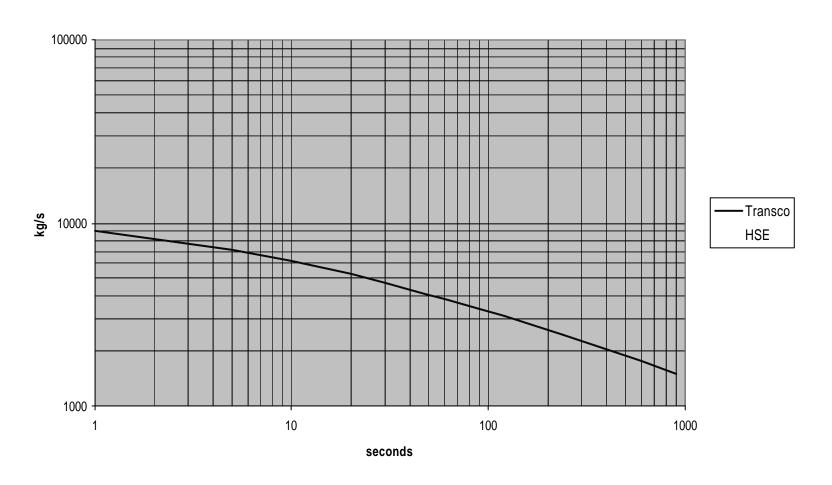
Canada Tests

Time (s)	Calc/Obs
	Release Rate
0	1.74
10	1.50
20	1.07
30	0.95
40	0.89
60	0.91
80	0.95
100	0.98

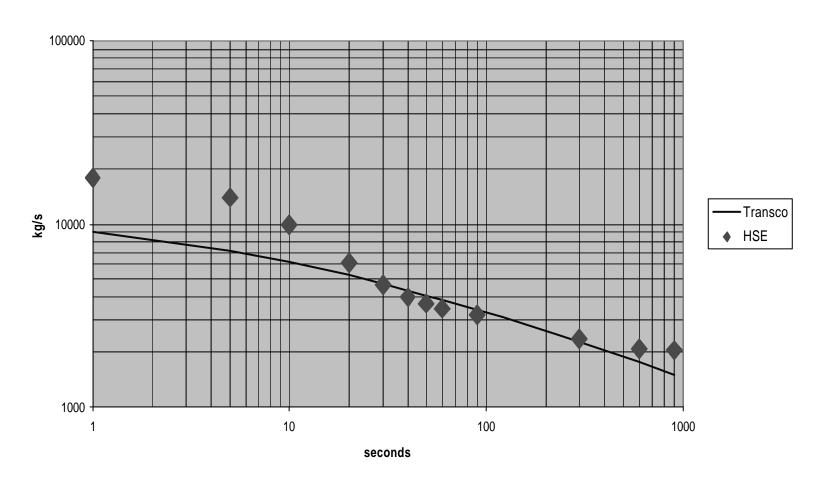
Test	Observed parameter	Calc/Obs	
		Fire-ball	
Can-1	Distance to given heat fluxes	1.4-1.6	
Can-2	Distance to given heat fluxes	1.1-1.3	
Spad-6	Heat flux at given distances	-	
Spad-7	Heat flux at given distances	-	
Spad-8	Heat flux at given distances	-	
Spad-9	Heat flux at given distances	-	

Test	Observed parameter	Calc/Obs Fire-ball	Calc/Obs Jet-fire OLD	
Can-1	Distance to given heat fluxes	1.4-1.6	0.0-0.8	
Can-2	Distance to given heat fluxes	1.1-1.3	1.0-1.3	
Spad-6	Heat flux at given distances	-	0.3-1.4	
Spad-7	Heat flux at given distances	-	0.3-0.8	
Spad-8	Heat flux at given distances	-	0.3-0.8	
Spad-9	Heat flux at given distances	-	0.3-0.8	

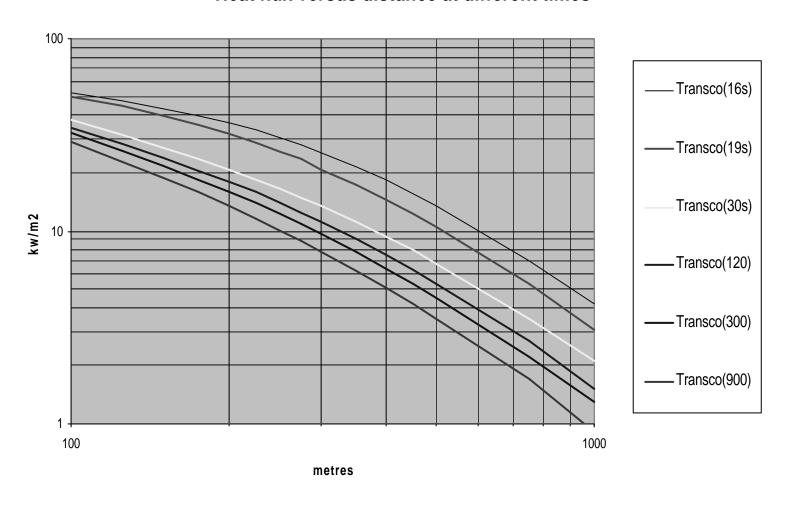
Test	Observed parameter	Calc/Obs Fire-ball	Calc/Obs Jet-fire OLD	Calc/Obs Jet-fire NEW
Can-1	Distance to given heat fluxes	1.4-1.6	0.0-0.8	0.9-1.3
Can-2	Distance to given heat fluxes	1.1-1.3	1.0-1.3	1.6-1.9
Spad-6	Heat flux at given distances	-	0.3-1.4	0.5-3.0
Spad-7	Heat flux at given distances	-	0.3-0.8	0.6-2.0
Spad-8	Heat flux at given distances	-	0.3-0.8	0.8-1.7
Spad-9	Heat flux at given distances	-	0.3-0.8	0.7-1.7

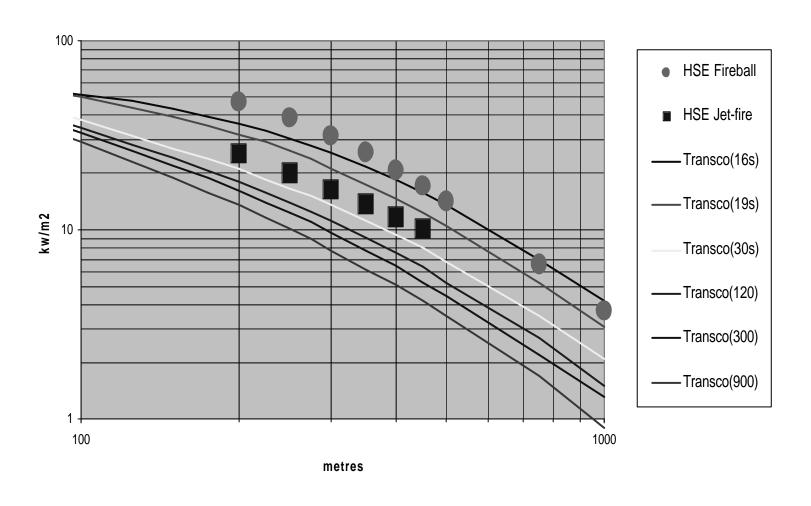

Validation of MISHAP01

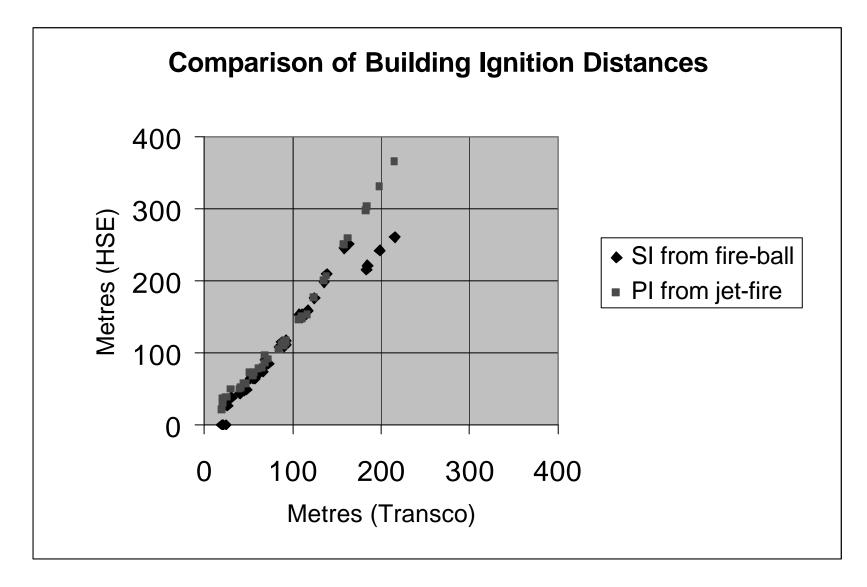
- The study will be reported as an HSE Contract Research Report during 2002
 - "Report on a second study of pipeline accidents using HSE's risk assessment program MISHAP"


Validation of MISHAP01

 We have also compared MISHAP01 consequence calculations with results from Transco's PIPESAFE programme


Release rate versus time


Release rate versus time



Heat flux versus distance at different times

Heat flux versus distance at different times

Noting:-

- that the included models are mostly conservative,
- but that there is a trend towards nonconservatism nearer to the pipeline

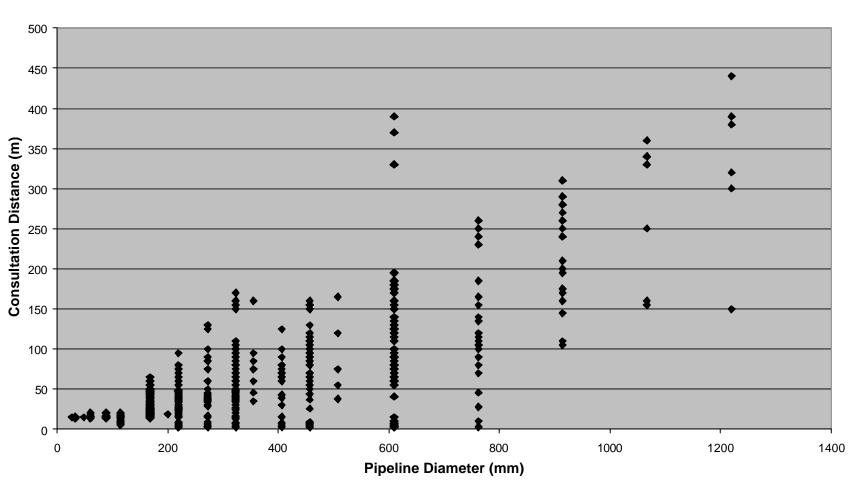
And:-

• that some phenomena that may be important near to the pipeline are not included in the model,

For example:-

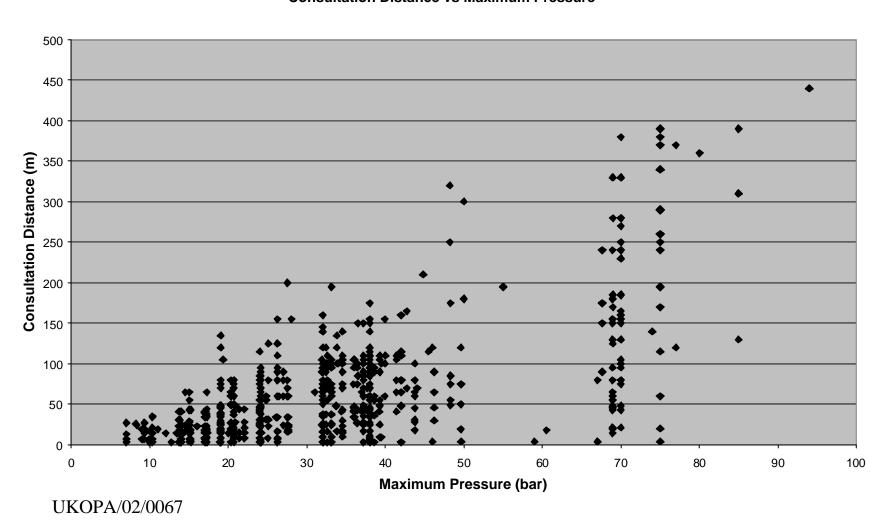
- for ruptures no blast overpressure, no debris from crater formation, no horizontal jets; and
- for punctures no grounded or angled jets,
 and no confined gas cloud explosions

We conclude that:-

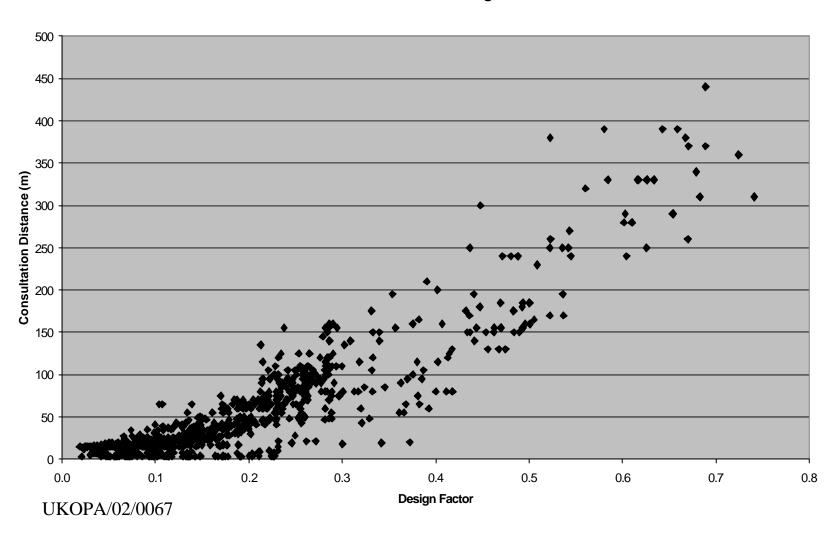

- MISHAP01 is broadly fit-for-purpose; but
- we will not trust it entirely in the near field

New basis for LUP zones for natural gas pipelines

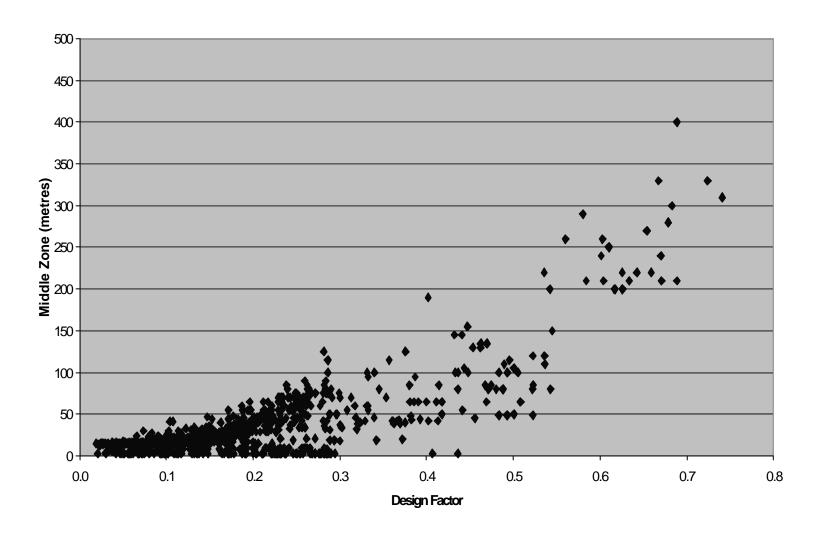
	Inner zone	Middle zone	Outer zone
Natural gas	Risk of 10 cpm or BPD	Risk of 1 cpm	Risk of 0.3 cpm


What are the results?

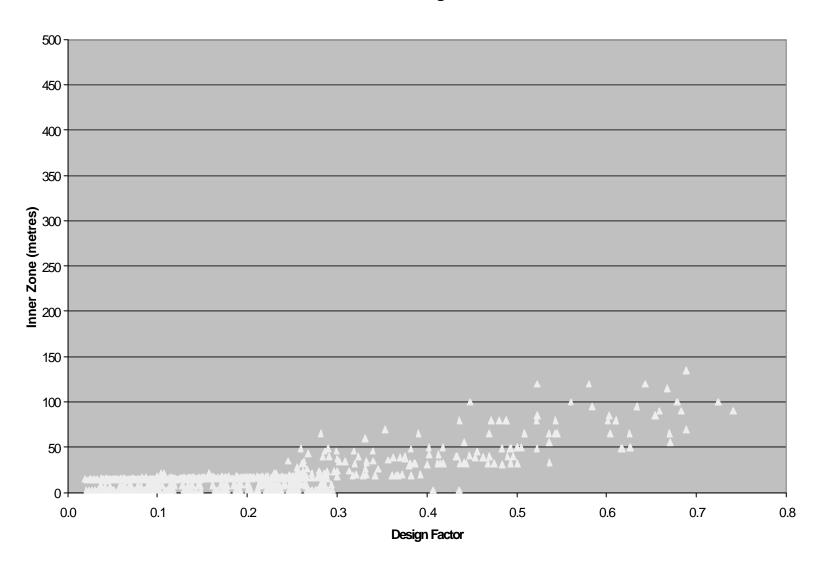
Consultation Distance vs Pipeline Diameter


What are the results?

Consultation Distance vs Maximum Pressure

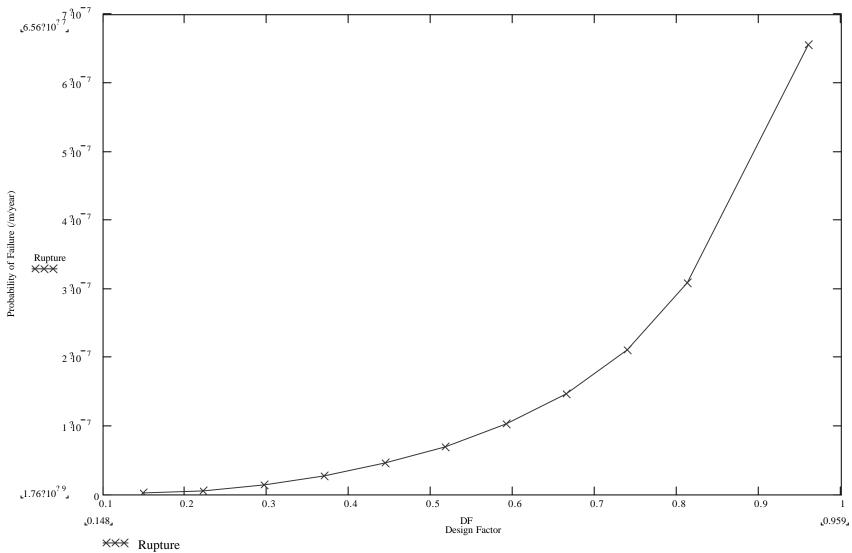


What are the results?

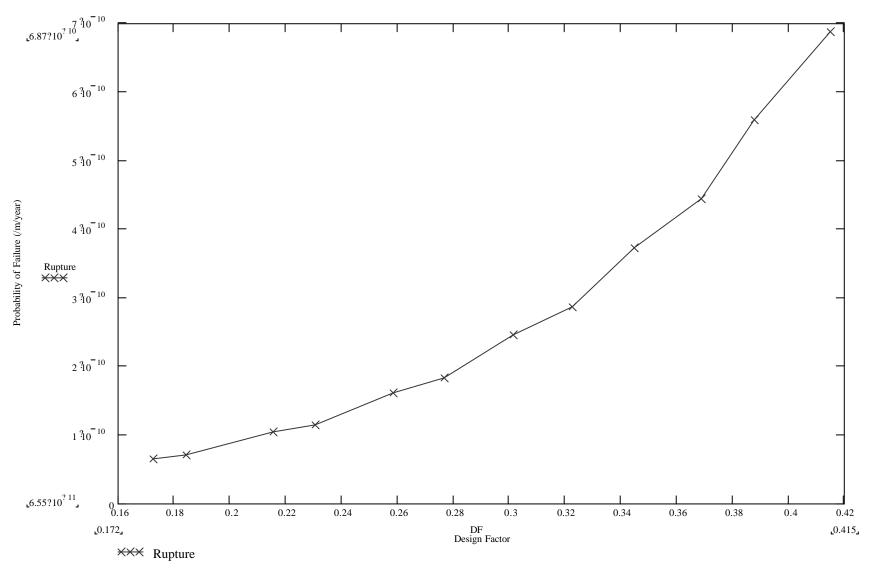

Consultation Distance vs Design Factor

Middle Zone vs Design Factor

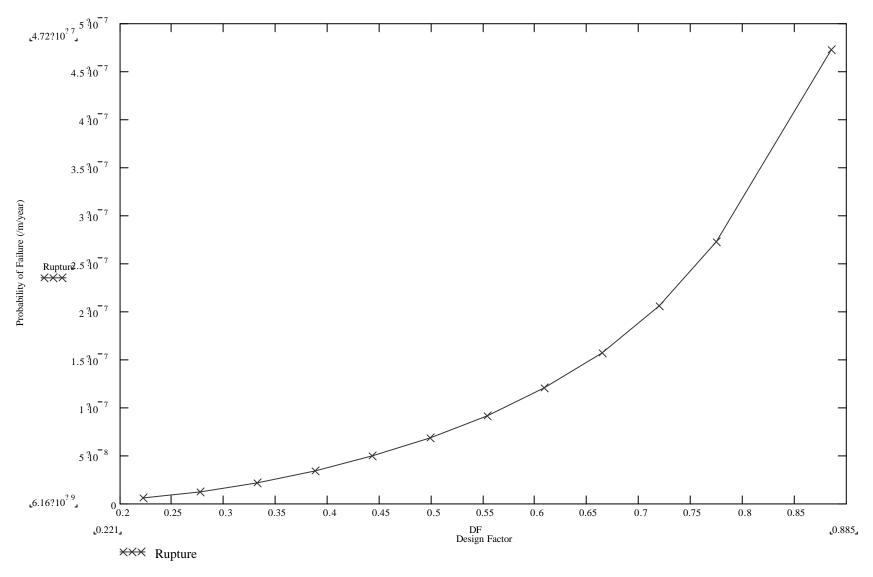
Inner Zone vs Design Factor

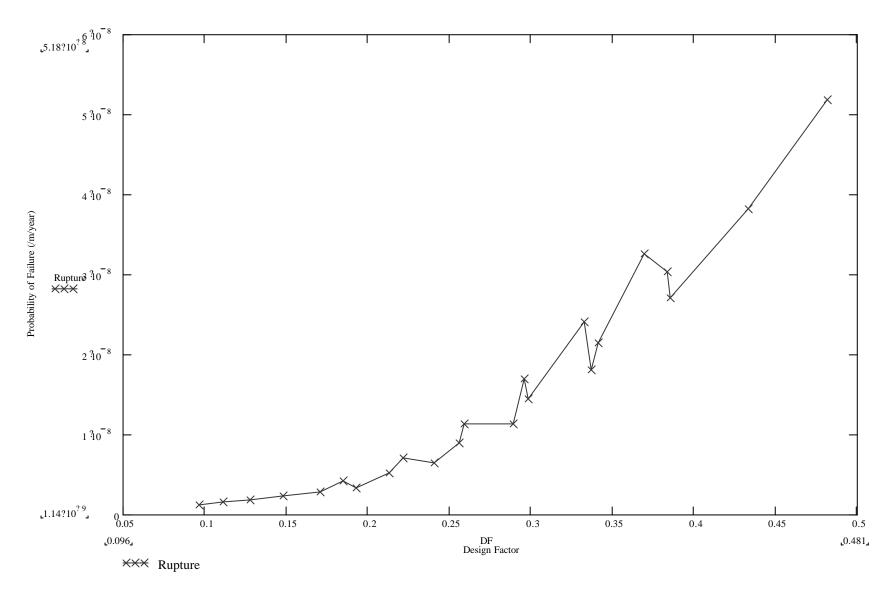

Application

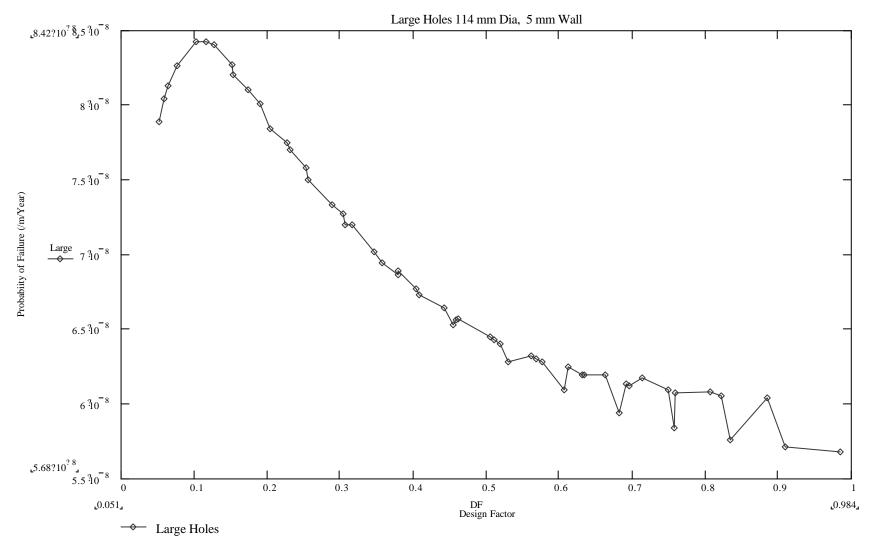
	IZ	MZ	OZ
SensLvl 1	DAA	DAA	DAA
SensLvl 2	AA	DAA	DAA
SensLvl 3	AA	AA	DAA
SensLvl 4	AA	AA	AA


Application

..... where:-


- SL1 = "normal working population"
- SL2 = "general public at home and involved in normal activities"
- SL3 = "vulnerable members of the public"
- SL4 = "large examples of 3 and large outdoor examples of 2"


Rupture of 1219 mm Diameter 10 mm Wall UKOPA/02/0067


UKOPA/02/Opture of 1067 mm Diameter, 15 mm Wall

UKOPA/02/Rupture of 914 mm Diameter, 10 mm Wall

UKOPA/02/0Rupture of 610 mm Diameter, 10 mm Wall

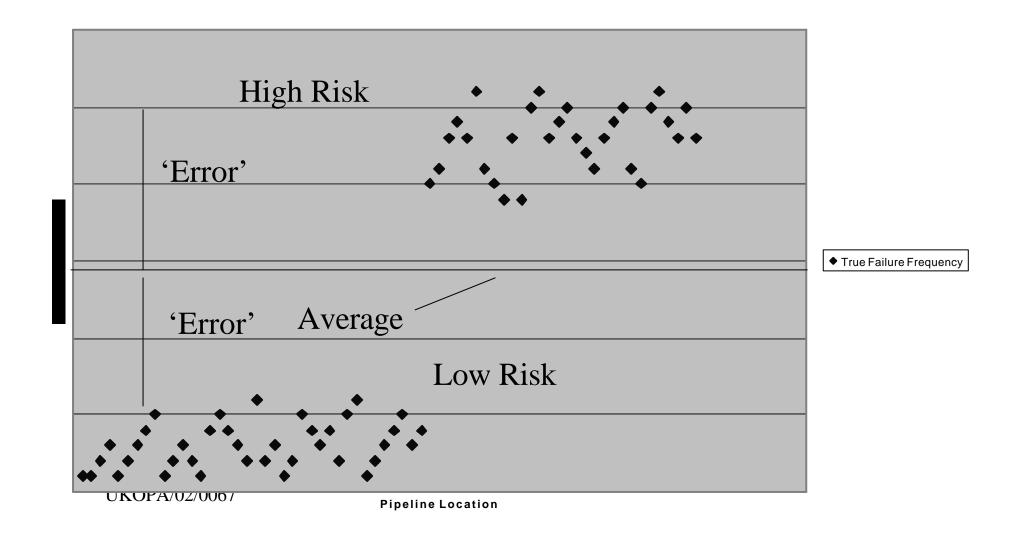
Large Holes 219 mm Diameter, 3 mm Wall UKOPA/02/0067

Mechanical Failures

	UKOPA	EGIG
Rupture	0	5
Large Hole	0	12
Small Hole	0	EGIG records only 'holes'
Pin Hole	49	34

EGIG data factored to match lower operational experience of UKOPA UKOPA/02/0067

Natural Failures


	UKOPA	EGIG
Rupture	1	9
Large Hole	0	5
Small Hole	1	EGIG records only 'holes'
Pin Hole	3	5

EGIG data factored to match lower operational experience of UKOPA

Natural Failure Debate

- Very dependant on geographical location
 - High and Low risk areas
 - Derived value represents and average for the whole network

Natural Failures Debate

Natural Failures Debate

- Mitigating Factors
 - IGE/TD/1 requires specific design and operational controls when the potential for landslip is identified
 - Will drive the 'high risk' area frequency down
 - Very small number of pipelines pass through high risk areas
 - Average dominated by low risk areas

Natural Failures Debate

Conclusion

- Average frequency not likely to be excessively conservative
- Further work would be beneficial
 - How effective are additional controls required by IGE/TD/1?
 - Should pipelines in high risk areas be treated separately?

Dealing with Zero Failures

- Cannot assume 'zero' failure frequency
- Assume 1 additional failure split over all four failure categories
 - @50% confidence that 'true' value will not be higher
 - Conservative best estimate

Dealing with Zero Failures

Example:

Mechanical Failures:

	Observed Failures	Proportion of Additional Failures	Calculation	Frequency (/m.yr)
Rupture	0	0.25/50	0.005/591282	8.4.10-12
Large Hole	0	0.25/50	0.005/591282	8.4.10-12
Small Hole	0	0.5/50	0.01/591282	1.7.10-11
Pin Hole	49	49/50	0.005/591282	8.5.10-8