

Managing Fatigue in an Onshore Pipeline System

Andre Goncalves, Malcolm Toft, Roland Palmer-Jones: Penspen Wilson Santamaria: ExxonMobil

Agenda

Background

Managing Fatigue

Testing and Inspection

Data

Analysis

Case Study

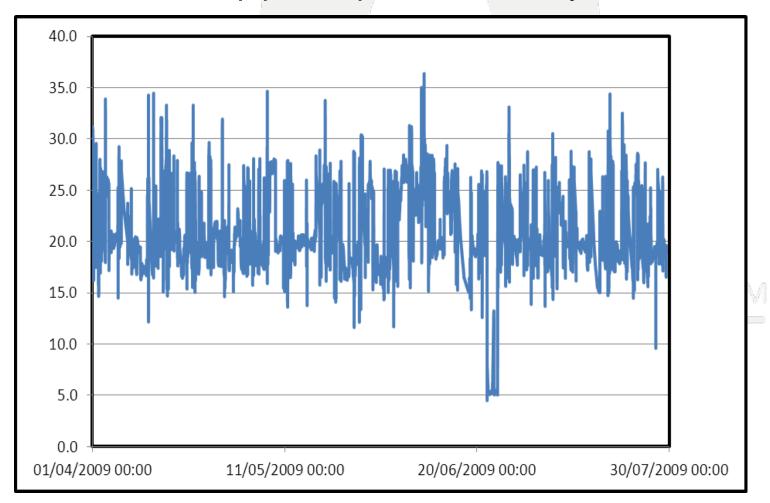
Conclusions

- 3 Casualties
- Mechanical damage plus cyclic pressure load

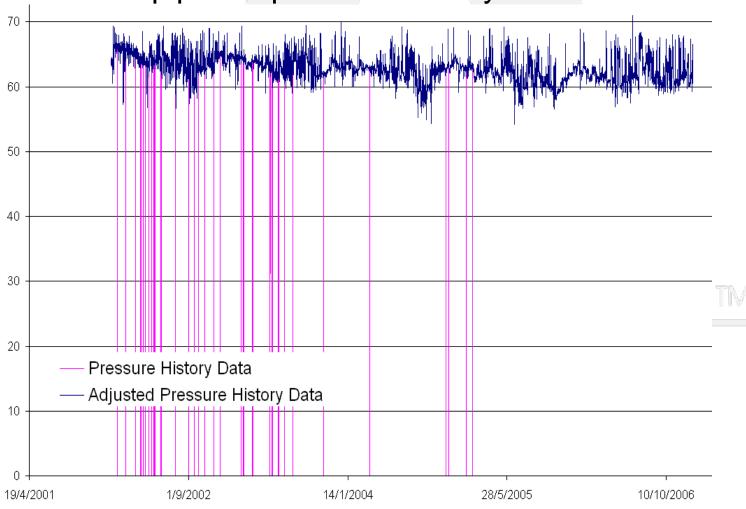
- 7 hectares contaminated
- Seam weld anomaly plus cyclic pressure load

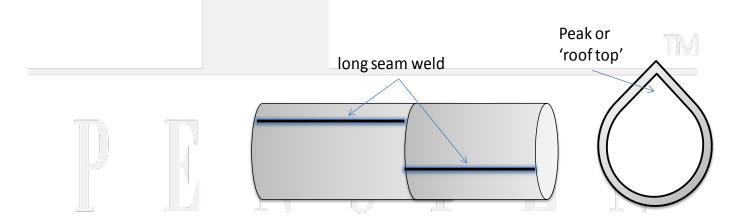
PENSPEN

 Fatigue loading is mainly a problem for pipelines transporting liquids.


TW

PENSPEN


Crude oil pipeline pressure history


Gas pipeline pressure history

- When is fatigue a concern?
 - Significant pressure cycles
 - Stress concentrating features
 - Weld anomaly
 - Hook crack
 - Dent
 - Roof topping

Agenda

Background

Managing Fatigue

Testing and Inspection

Data

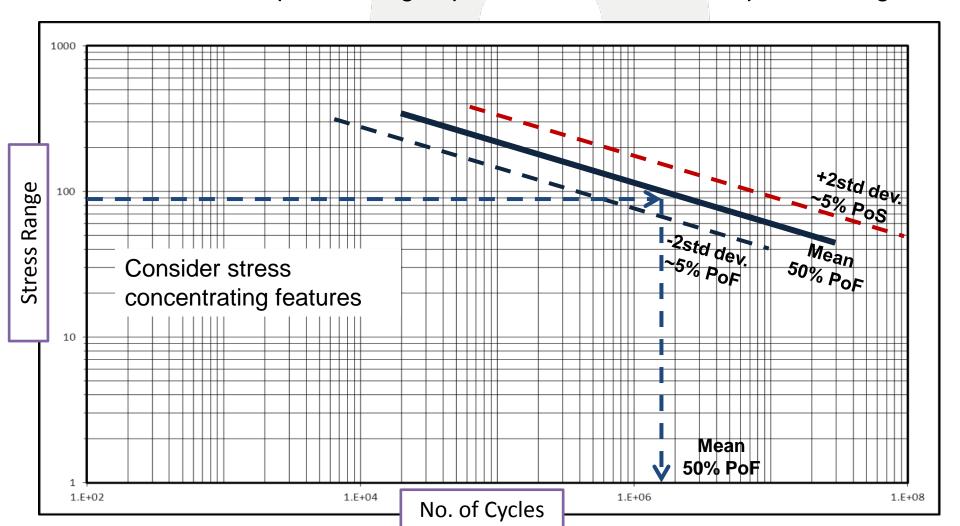
Analysis

Case Study

Conclusions

- Requirements for Managing Fatigue
 - Awareness
 - Information on stress concentrating features (weld defects etc.)
 - Pressure data
 - Reliable analytical models for:
 - Critical defect sizes
 - Crack growth

- Awareness Failures
 - Enbridge 2011
 - SPSE 2011
 - Others...



W

- Awareness Design checks
 - Evaluation of expected fatigue performance can be completed using SN.

Agenda

Background

Managing Fatigue

Testing and Inspection

Data

Analysis

Case Study

Conclusions

- Hydrotesting
 - Will find (fail) critical defects

ΓW

PENSPEN

Inspection

- Ultrasonic Crack Detection and EMAT tools
- Sizing remains difficult
- Unusual seam welds can mask defects

- Inspection
 - High resolution geometry tools
 - Dent strain
 - Dent shape

Agenda

Background

Managing Fatigue

Testing and Inspection

Data

Analysis

Case Study

Conclusions

Pressure Data

- High frequency
- Time stamped
- Upstream
- Downstream
- Understanding of hydraulic profile
- Interpolation to estimate pressure at defect location

Agenda

Background

Managing Fatigue

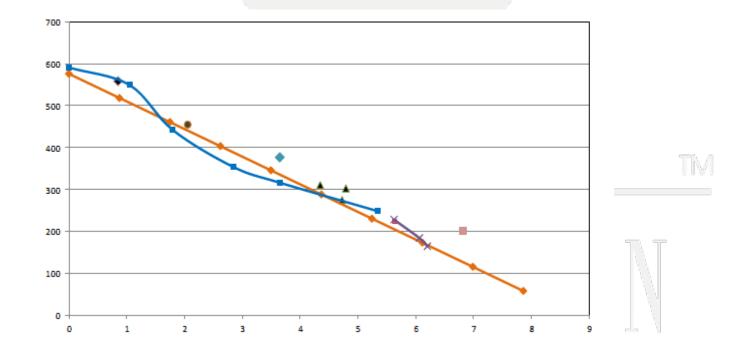
Testing and Inspection

Data

Analysis

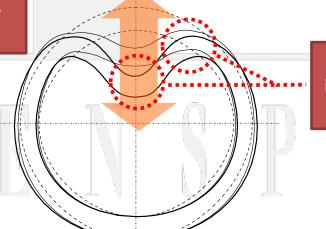
Case Study

Conclusions



- Analysis of Weld Defects
 - Critical defect size
 - Toughness?
 - Strength?
 - Crack?
 - Brittle or ductile failure behaviour?
 - Crack growth rates
 - Stress concentrating features
 - Roof topping
 - Misalignment

 Testing of cracks in SAW welded pipe indicates that failure is ductile and predicted by standard equations


- Recommended approach for weld defects
 - Pipelines a relatively thin, ductile material (weld zones are also generally ductile), operating at normal temperatures.
 - Critical defect sizes should be calculated using standard pipeline methods (NG-18). Testing can be used to confirm this.
 - Fatigue crack growth rates should be calculated using standard fracture mechanics methods (BS 7910). Careful consideration should be given to stress concentrating features.

- Recommended approach for dents
 - Check dent strain (ASME B31.8)
 - Depth based fatigue assessment
 - Consider constraint conditions
 - FEA to estimate stress
 concentrations followed by SN based fatigue.

the dent depth changes as the internal pressure changes

cyclic internal pressure induces cyclic stresses and strains in the dent

Agenda

Background

Managing Fatigue

Testing and Inspection

Data

Analysis

Case Study

Conclusions

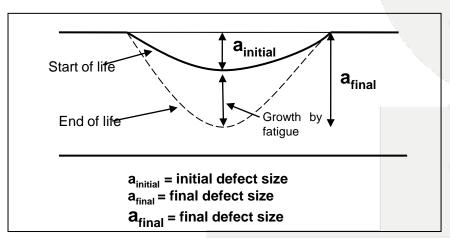
Case Study

TW

PENSPEN

Pipeline System

Pipeline	Nominal outside diameter Inches	Type of Pipe	Material API Grade	Thk.	MAOP Bar	Comm. Date
ERW#1	10	ERW	X 52	4.8	79	1981
ERW#2	14	ERW	X 60	5.6	88.5	1985
ERW#3	12	ERW	X 60	5.4	88.5	1992
Seamless#1	6	Seamless	Grade B	5.6	99.3	1962
Seamless #2	12	Seamless	X42	6.35	71.5	1962
Seamless#3	10	Seamless	X 52	6.35	82.7	1969



- Awareness 20 years ago
 - MFL inspections
 - Dents not reported
 - Gouges difficult to detect
 - Seam weld defects not detectable
 - Pressure records available
 - Evidence of failures around the world.

- 1994 first fatigue study on the Esso System.
- No data was available on seam weld anomalies.
- Remaining fatigue life calculated by:

Calculating the largest crack type defect that would have survived the pipeline's precommissioning hydrotest;

Determining the smallest defect which would fail at the pipeline's MAOP; and,

Calculating the time for the defect to grow from its hydrotest survival size to the its MAOP failure size.

Results

- 3 pipelines predicted to have exceeded their design fatigue life
- Hydrotest recommended

Review

- Assumption on initial defect conservative and did not include consideration of credible defects.
- Limited pressure data (1 week).
- Dents not considered.

- 1995 further study
 - Defect credibility
 - Measured material properties
- Results
 - 2 pipelines still exceeding 'design' fatigue life
- Review
 - Dents not considered

- 1999 Transverse Field Inspection for seam weld anomalies
 - No crack like anomalies reported
 - Detection threshold is high –
 significant defects could be missed.

1999 further studies

- Fatigue study on inspected line assuming defect at limit of detection.
- Probabilistic study of other lines

Results

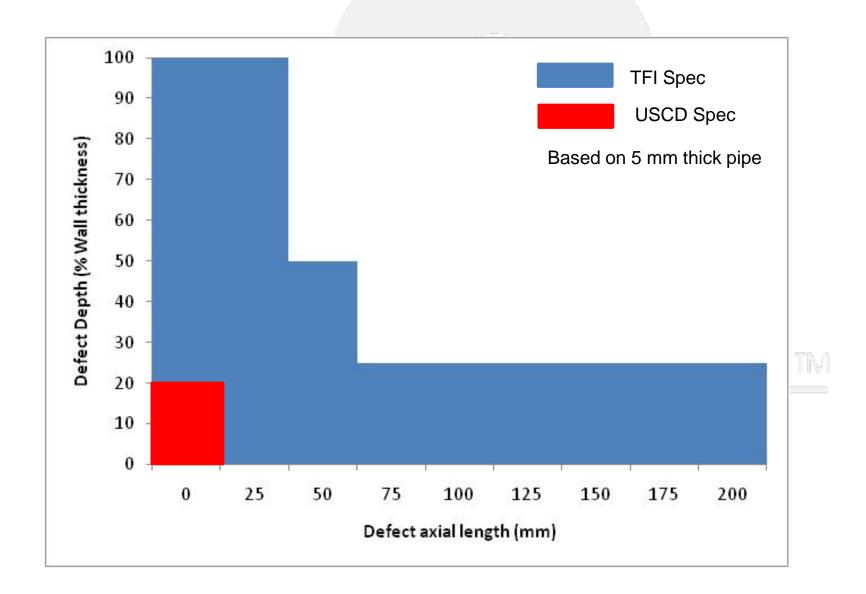
- Fatigue life of inspected pipeline extended to 2008
- 20% probability of failure due to fatigue estimated for other line.

Review

Dents not considered

- 1994, 1995, and 1999 studies were generic, and relied on assumptions due to lack of data.
- Internal inspection specifically looking for seam weld anomalies in 1999. Since then all the pipelines in the Esso system have been inspected for fatiguesensitive defects
- All inspections were followed by engineering assessments

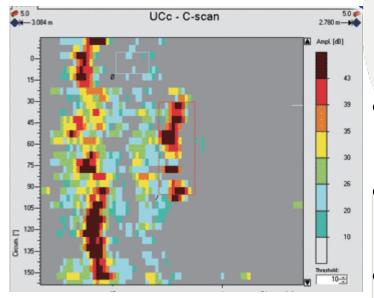
1994 - 1995 1999	 Two generic fatigue assessments of the Esso pipeline system. TFI inspection of ERW#3 pipeline Probabilistic assessment of Esso Lines 		Pre-inspection assessments
2003 - 2004	• TFI and calliper inspection of ERW#1 pipeline • TFI and calliper inspection of Seamless#2 pipeline	_	TFI & Calliper Inspections
2005	Calliper inspection of the Seamless#1 pipeline		
2006	 Ultrasonic Crack Detection inspection of ERW#1 Pipeline Ultrasonic Crack Detection and calliper inspection of ERW#2 Pipeline 		USCD & Calliper Inspections
2007	Ultrasonic Crack Detection inspection of ERW#3 Pipeline	_	
2010	Ultrasonic Crack Detection inspection of ERW# 1Pipeline Calliper inspection of the White Oil pipeline		USCD re-Inspections



- Initial inspections for seam weld anomalies were carried out using TFI
- TFI
 - Detection threshold ~20% wt and 'open'
- USCD
 - Detection threshold 1 mm depth for defects longer than 25 mm
- Since 2006 all inspections looking for seam weld cracks have been USCD

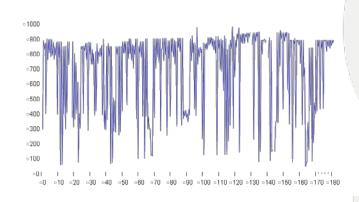
 Comparison of results of TFI and USCD inspections

Inspection Technology	TFI	USCD	
Inspection Year	1999	2007	
Findings	No Crack-like anomalies	42 Crack-like 148 notches 252 Weld anomalies	



- USCD tools are sensitive to a variety of anomalies. The following anomaly categories are often reported
 - Crack-like
 - Crack-fields
 - Weld Anomalies
 - Mill Anomalies
 - Notch-like

- Crack-like anomalies and weld anomalies are the most susceptible to fatigue.
- Notches and mill anomalies are less susceptible.
- Classification of anomalies is critical.
- The operator relies on competent ILI data-analysis.

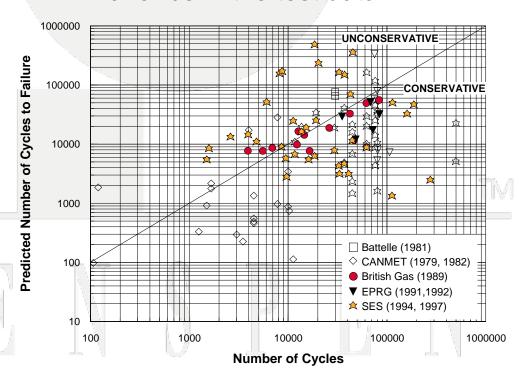

2006 data

	Crack Fields	Crack - Like	Notch Like	Not Decidable
N°	6	1,857	5,549	140
Reported				

- 93 digs and associated repairs
- 11% of crack-type defects actually contained planar anomalies
- 2% of defects in which the USCD had not detected crack-like anomalies were found to actually contain planar defect types

Pressure Data

- 1994 study used one week of pressure data
- 2003 to 2007 assessments used 1 year of pressure data
- Recent assessments used 9 years of pressure data
- Pressure now recorded every 2 minutes.


BRITISH STANDARD Guide to methods for assessing the acceptability of flaws in metallic structures 108 25 160 40

- Assessment Cracks
 - BS 7910, recommended in PDAM
 - Conservative
 - Assessments generally predict numerous defects to have already failed
 - However no fatigue induced failures have occurred to date
 - Sources of conservatism
 - Correlation between Charpy impact strength and true material fracture toughness.
 - Fatigue crack growth rates, which are known to be a "upper-bound" estimate.

- Assessment Dents
 - EPRG recommended in PDAM
 - Conservative due to genuine variance in the test data

Future management - Inspection

- Continue multiple technology inspection regime
- Understanding & supporting latest technology for inspection
- Cooperation with ILI companies to improve classification of defects – reduce bias



Future Management – Operation

- Better understanding of pipeline operation – reduce pump & valve transients, and unnecessary fatigue loading of pipeline.
- Education of operating staff on fatigue (development of operating philosophy).
- Pressure transient analysis of system to assess anomalies to local pressure rather than inlet or outlet pressure.
- Communication/MoC ensure operational changes are communicated.

- Future Management –
 Assessment
 - Material (ring) testing to get better understanding of fatigue susceptibility and critical defect sizes
 - Correlation of successive inspections to infer dent dates and crack growth.
 - Promoting awareness of fatigue in the pipeline industry pipelines are getting older

Thank you

Roland Palmer-Jones

Penspen Limited

Units 7&8 Terrace Level

St Peters Wharf

Newcastle upon Tyne

NE6 1TZ

www.penspenintegrity.com