

An Update to the Recommended UKOPA External Interference Failure Frequency Prediction Model & Pipeline Damage Distributions

IPC2018-78767

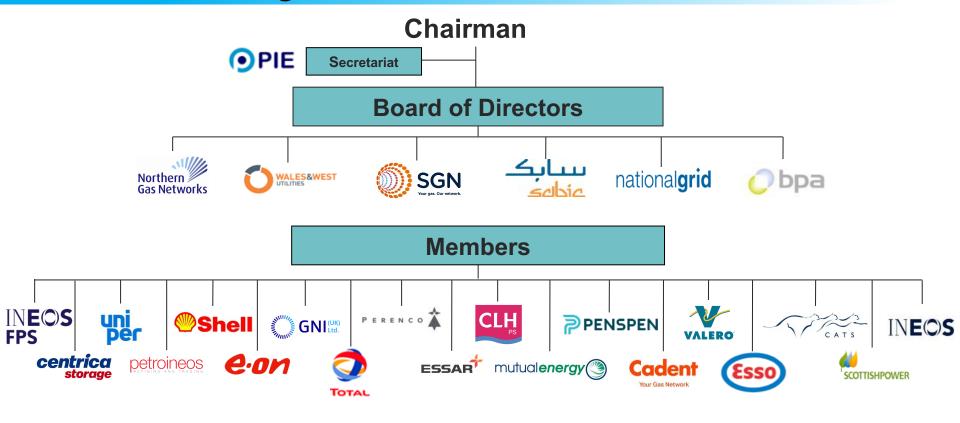
Graham Goodfellow, PIE

&

Chris Lyons, PIE
Susannah Turner & Fraser Gray, HGA
Simon Joyce, SGN

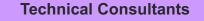
Presentation Overview

- What is UKOPA?
- UKOPA Database
- Why Predict External Interference Failure Frequency?
- Current UKOPA Recommended Methodology
 - FARWG Review Projects
- Updated Model Recommendations
 - Dent Force
 - Distributions
- Updated Damage Distribution Parameters
- Prediction Comparison
- Summary & Conclusions

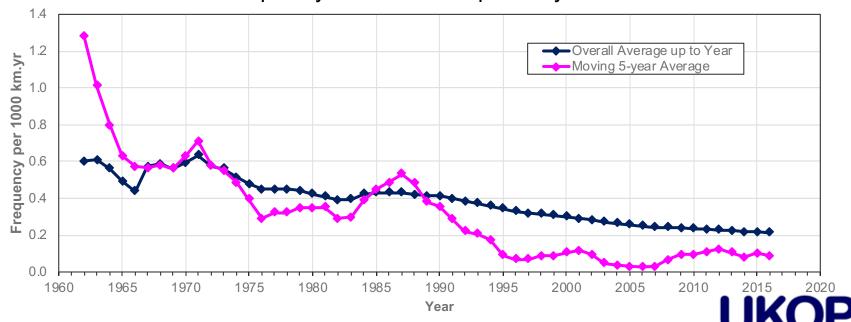

What is UKOPA?

- The United Kingdom Onshore Pipeline Operators Association
 - Founded in 1996 to represent the views & interests of UK hazardous pipeline operators
 - Recognised and authoritative view of UK Pipeline Operators on strategic issues relating to quantitative risk assessment, safety management, operations and integrity management of pipelines.
 - Effectively influence the development and implementation of pipeline related legislation and standards for the mutual benefit of all stakeholders
 - Promote good practice in the pipeline industry.
 - Currently 27 members
 - > 21,845 km network with ≈1,000,000 km years operating experience
 - Overall strategy set by Board and discussed at main meetings
 - Workload driven by 5 working groups
 - Chaired & attended by volunteers from member companies
 - Secretarial support from PIE
 - Technical support from consultants (currently PIE and DNV GL)
 - Some technical work outsourced

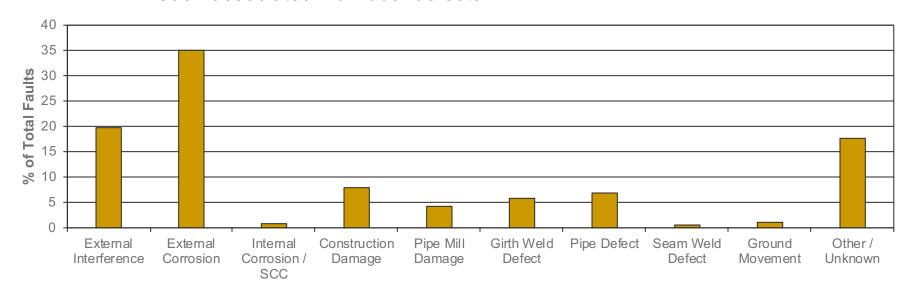
UKOPA Organisation



International Associates



UKOPA Database – Product Loss Data


- Data from 11 MAHP Operators
 - Natural Gas, Ethylene, Spiked Crude & LPG pipelines but not Gasoline & Stable Crude
 - Exposure = 927,351 km years (1952 2016)
 - 197 product loss incidents (1962 2016)
 - Product loss frequency = 0.212 x 10⁻³ per km year

UKOPA Database – Fault Data

- UKOPA Database also records faults
 - Damage that did not cause failure with defect dimensions confirmed by field dig
 - 3756 faults (up to end 2016)
 - 5967 associated individual defects

Why Predict External Interference Failure Frequency?

Things occasionally go wrong...

Why Predict External Interference Failure Frequency?

Only 43 external interference loss of containment incidents in the database

Why Predict External Interference Failure Frequency?

Only 43 external interference loss of containment incidents in the database

Diameter [inches]	Exposure [km.yr]	External Interference Incidents	Frequency [per 1000 km.yr]
0 - 4	44,243	5	0.113
5 - 10	186,294	22	0.118
12 - 16	155,228	9	0.058
18 - 22	136,557	3	0.022
24 - 28	147,156	3	0.020
30 - 34	43,826	1	0.023
36 - 48	208,648	0	0.000
TOTAL	921,995	43	0.047

Wall Thickness [mm]	Exposure [km.yr]	External Interference Incidents	Frequency [per 1000 km.yr]
<5 mm	58,933	13	0.221
6 - 10 mm	433,332	26	0.060
11 - 15 mm	352,906	4	0.011
>15 mm	76,300	0	0.000
TOTAL	921,995	43	0.047

- Not enough historical failures to derive a pipeline specific failure frequency
 - No failures from any cause for diameters ≥ 36" or wall thickness > 15 mm

International Pipeline Conference 2018

Current UKOPA Prediction Model Recommendations

- Probabilistic defect distribution parameters derived from UKOPA database
 - Gouge Length, Gouge Depth & Dent Depth
- Characteristic values for pipeline parameters
- 'Hit' rate calculated from UKOPA database
- Standard failure equations
 - EPRG Dent-Gouge model (API 579 / ASME FFS-1) & NG-18 (flow stress dependent)
- Presented at IPC2008
- Methodology embedded in the FFREQ program
 - Part of DNV GL Pipesafe software (JIP Members only)
 - Or PIE, Penspen and other models
- Updated defect distribution parameters presented at IPC2012 (1962-2009)

International Pipeline Conference 2018

Current UKOPA Prediction Model Recommendations

- Probabilistic defect distribution parameters derived from UKOPA database
 - Gouge Length, Gouge Depth & Dent Depth
- Characteristic values for pipeline parameters
- 'Hit' rate calculated from UKOPA database
- Standard failure equations
 - EPRG Dent-Gouge model (API 579 / ASME FFS-1) & NG-18 (flow stress dependent)
- Presented at IPC2008
- Methodology embedded in the FFREQ program
 - Part of DNV GL Pipesafe software (JIP Members only)
 - Or PIE, Penspen and other models
- Updated defect distribution parameters presented at IPC2012 (1962-2009)

Weibull Parameters	Gouge Length	Gouge Depth	Dent Depth
Shape (α)	0.573	0.674	1.018
Scale (β) mm	125.4	0.916	9.382

FARWG Review Projects

- UKOPA Fault & Risk Working Group
 - Committed to updating distribution parameters every 5 years
 - Previous update included data to end 2009...
 - Aware of areas where prediction methodology could be improved
 - National Grid COOLTRANS CO₂ pipeline research project
- 2 projects kicked off in 2017
 - Review current recommended prediction methodology
 - Pipeline Integrity Engineers (PIE)
 - Update distribution fit analysis for 2010 2016 data
 - Highgrade Associates (HGA)

Prediction Methodology Review

- PDAM2
 - Latest edition of JIP review of 'best' methods for defect assessment
- NG COOLTRANS
 - AFFECT development of prediction model for thick-walled CO₂ pipelines
- EPRG new dent-gouge model
 - Not yet available for formal review
 - Model may require parameters on dent shape
 - Only dent depth recorded in UKOPA database
- Key areas of prediction methodology reviewed
 - Limit-state Models
 - Spring-back & Re-rounding of Dents
 - Leak-Break Boundary
 - Dent Force
 - Distributions

Dent Force

- Original assumption that external interference damage is independent of pipeline and depends only on excavator
 - Reasonably credible for gouges but less so for dents
- Dent depth will also depend on pipeline resistance to denting
 - Pipe geometry, material properties, internal pressure, backfill properties
- Create a distribution of force applied during external interference events instead of dent depth
 - Dent depth records
 - Pipeline design and operating parameters
 - Model relating dent depth and force applied

EPRG semi-empirical relationship recommended

$$F_{dent} = 0.49 \sqrt{P_r} H_P^{0.42}$$
 $P_r = \sqrt{\sigma_Y Lt} \left(t + \frac{0.7PD}{\sigma_U} \right)$

Most important thing is to use same model in both directions

Distributions

- UKOPA previously published distribution parameters for
 - Gouge length, gouge depth and dent depth
 - Weibull distributions used for historical reasons
- ISRU at Newcastle University reviewed UKOPA defect data for COOLTRANS project
 - 'Plain' gouges are a statistically separate population from gouges in dents
 - Lognormal a better fit for some distributions
- 5 distributions recommended
 - 'Plain' Gouge Length & Depth
 - 'Gouge in Dent' Gouge Length and Depth
 - Dent Force

Summary of UKOPA Conference 2018 Prediction Methodology Recommendations

- Limit State Models
 - Remain NG-18 and EPRG Dent-gouge
- Spring-back and Re-rounding of Dents
 - Should be accounted for
 - Use simple EPRG correlation
- Leak-break boundary
 - Defined by 3 term flow stress dependent Folias factor
- Dent force should be used instead of dent depth
 - Simple EPRG model to convert dent depth to force and back
- 5 damage distributions
 - Lognormal or Weibull

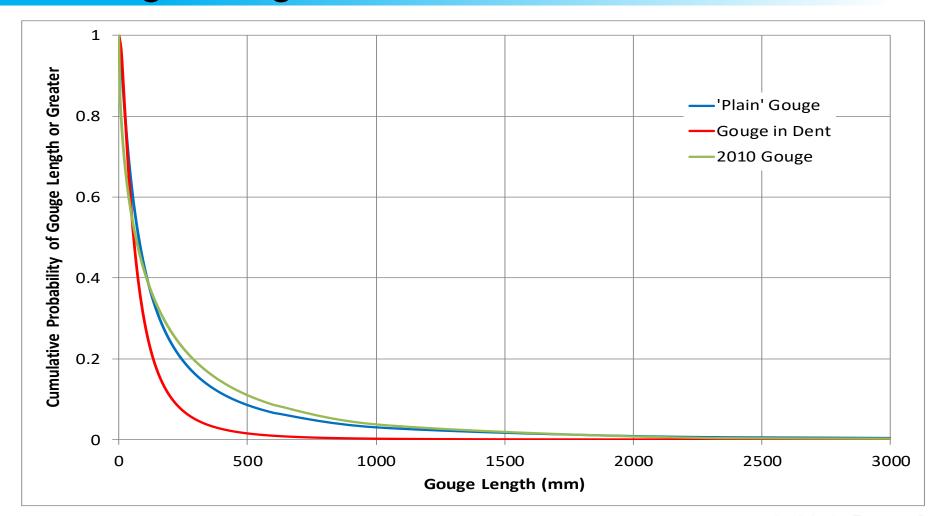
Updated Damage Distribution Parameters

- Data reviewed by Highgrade Associates
 - Data filtered, defects classified & distributions fitted using MLE method in @Risk

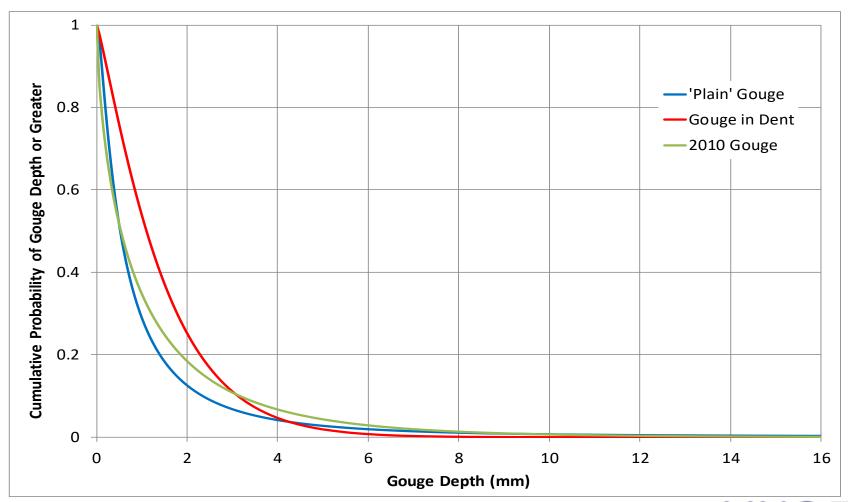
Updated Damage Distribution Parameters

- Data reviewed by Highgrade Associates
 - Data filtered, defects classified & distributions fitted using MLE method in @Risk

Description	Number of Records		
'Plain' Dents	50		
Dents associated with Gouges	80		
Total Dents	130		
'Plain' Gouges	551		
Gouges in Dents	131		
Total Gouges	686		
Total External Interference Defects	808		


Updated Distribution Parameters

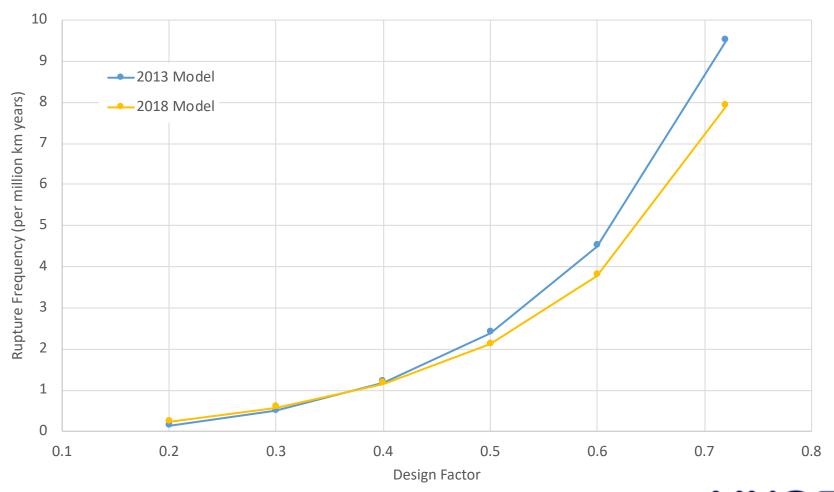
Fault Type	Fault Parameter	Distribution Type	Distribution Parameters	
'Plain' Gouge	Length (mm)	Lognormal	μ	σ
			4.351	1.360
	Depth (mm)	Lognormal	μ	σ
			-0.645	1.161
'Gouge in Dent'	Length (mm)	Lognormal	μ	σ
			4.059	0.996
	Depth (mm)	Weibull	α	β (mm)
			1.15	1.51
Dent	Force (kN)	Lognormal	μ	σ
			3.969	0.516


Gouge Length

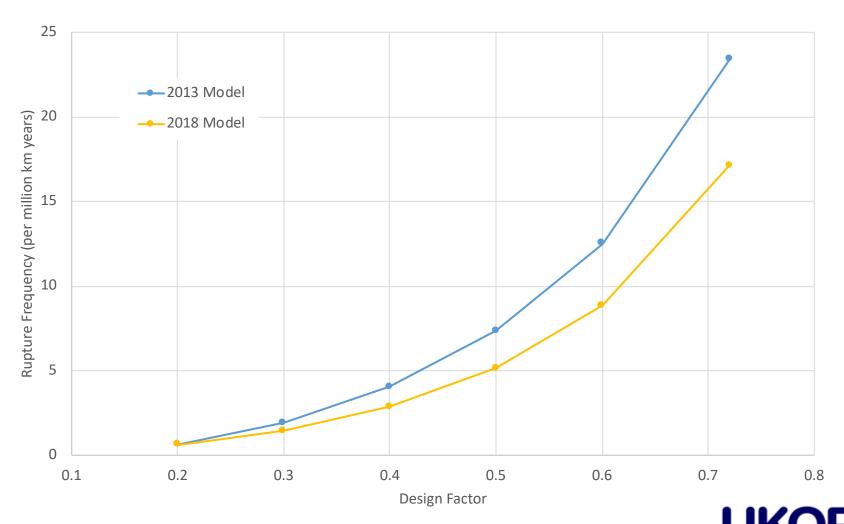
Gouge Depth

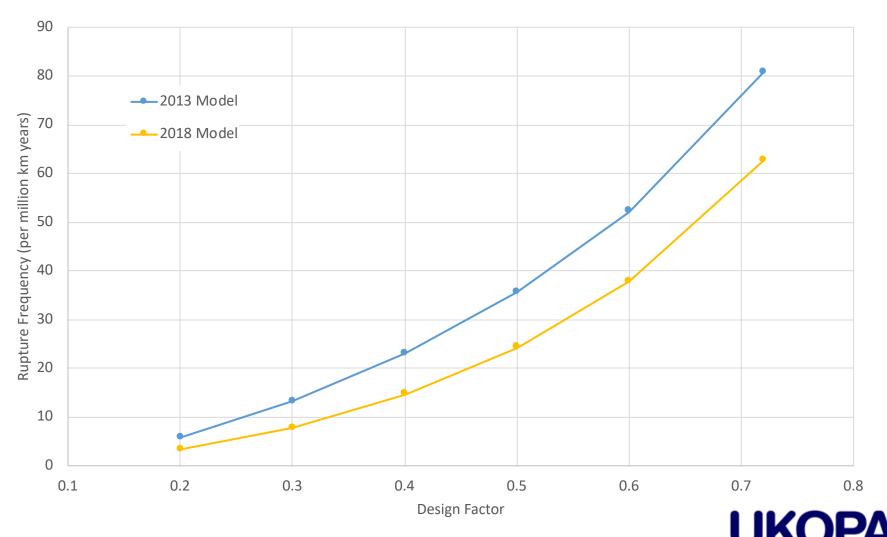
Frequency of External Interference

- 1962 to 2016
 - Total individual defects with non-zero depth = 728
 - Total operating exposure = 927,351 km years
- This gives 'hit rate' corresponding to average depth of cover of incidents in database
 - Normalised to nominal 1.1 m depth of cover
- Frequency of external interference in UK Rural area
 = 1.091 per thousand km years
 - R area ≈ Class 2 (B31.8 / CSA Z662)


Prediction Comparison

- Calculations for a standard range of pipeline diameters, grades, wall thicknesses and design factors
 - Various models from FFREQ (mid-1990s) to 2018 update
- Rupture predictions presented for 3 sets of pipeline cases using 2013 and 2018 models
 - 914 mm diameter, X65, 11.91 mm wall thickness
 - 609 mm diameter, X60, 9.52 mm wall thickness
 - 323.9 mm diameter, X52, 6.35 mm wall thickness
- Only change due to distribution parameters and 'hit rate'


914 mm, X65, 11.91 mm



609 mm, X60, 9.52 mm

323.9 mm, X52, 6.35 mm

Summary & Conclusions

- Significant review of key elements of methodology for predicting external interference failure frequency completed
- Parameters for 5 damage distributions produced
- Small reduction in predicted rupture failure frequency between 2013 and 2018 models
 - 6 years more data included in distributions
 - Reduction in hit rate

Thanks

- Co-authors for all the hard work
- All members of the UKOPA Fault and Risk Working Group for contributions to the development of this work over the years
 - Especially Jane Haswell & Rod McConnell
- Special thanks for assistance and advice
 - Julian Barnett, Andrew Cosham and Bob Andrews,

Any Questions?

